2b^2+2/10+4=17

Simple and best practice solution for 2b^2+2/10+4=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2b^2+2/10+4=17 equation:



2b^2+2/10+4=17
We move all terms to the left:
2b^2+2/10+4-(17)=0
determiningTheFunctionDomain 2b^2+4-17+2/10=0
We add all the numbers together, and all the variables
2b^2-13+2/10=0
We multiply all the terms by the denominator
2b^2*10+2-13*10=0
We add all the numbers together, and all the variables
2b^2*10-128=0
Wy multiply elements
20b^2-128=0
a = 20; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·20·(-128)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*20}=\frac{0-32\sqrt{10}}{40} =-\frac{32\sqrt{10}}{40} =-\frac{4\sqrt{10}}{5} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*20}=\frac{0+32\sqrt{10}}{40} =\frac{32\sqrt{10}}{40} =\frac{4\sqrt{10}}{5} $

See similar equations:

| 2c^2+2/10+9=19 | | r(5+2r)-5(r-4)=52 | | 5x^2/2+47=137 | | 21+8y=15y | | 9k+21/2=8 | | 0.08x=22 | | 152-x=284 | | -5x-2+4(x+1)=4(-3-x)-1 | | A=5b+7 | | 10-4t=5t | | 3^2x-3^2x-1=18 | | 45-4=5y | | 9x-23=3x+19 | | 10x+14=3x-21 | | 42n+16-19n=39 | | 16-12d=16 | | 35/100x120=42 | | y-2.6=16.2 | | -6=8+x/5 | | -23n=-92 | | 10-+13x=341 | | 900+576=c^2 | | 60+14x=(12+6x) | | w=63-8w | | 5-3(x+3)=-(5x+2) | | 20x+14=-3x(3x) | | (12x-18)+(8x+10)=180 | | 40+7v=12v | | 100-2x4x3+15=91 | | 8(2x-1)-3(2x-1)=x-22 | | (2x-4=3x-9) | | 4-3x=5x-2(3-x) |

Equations solver categories